Home | About us | Editorial Board | Search | Ahead of print | Current Issue | Archives | Instructions | Online submissionContact Us   |  Subscribe   |  Advertise   |  Login  Page layout
Wide layoutNarrow layoutFull screen layout
Lung India Official publication of Indian Chest Society  
  Users Online: 358   Home Print this page  Email this page Small font size Default font size Increase font size


 
  Table of Contents    
ORIGINAL ARTICLE
Year : 2012  |  Volume : 29  |  Issue : 2  |  Page : 123-127  

Hydrogen peroxide in exhaled breath condensate: A clinical study


Department of Pulmonary Medicine, Rajiv Gandhi Institute of Chest Diseases, BMCRI, Bangalore, India

Date of Web Publication24-Apr-2012

Correspondence Address:
C Nagaraja
Department of Pulmonary Medicine, Rajiv Gandhi Institute of Chest Diseases, BMCRI, Bangalore 560 029
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0970-2113.95303

Rights and Permissions
   Abstract 

Objectives: To study the ongoing inflammatory process of lung in healthy individuals with risk factors and comparing with that of a known diseased condition. To study the inflammatory response to treatment. Background: Morbidity and mortality of respiratory diseases are raising in trend due to increased smokers, urbanization and air pollution, the diagnosis of these conditions during early stage and management can improve patient's lifestyle and morbidity. Materials and Methods: One hundred subjects were studied from July 2010 to September 2010; the level of hydrogen peroxide concentration in exhaled breath condensate was measured using Ecocheck. Results: Of the 100 subjects studied, 23 were healthy individuals with risk factors (smoking, exposure to air pollution, and urbanization); the values of hydrogen peroxide in smokers were 200-2220 nmol/l and in non-smokers 340-760 nmol/l. In people residing in rural areas values were 20-140 nmol/l in non-smokers and 180 nmol/l in smokers. In chronic obstructive pulmonary disease cases, during acute exacerbations values were 540-3040 nmol/l and 240-480 nmol/l following treatment. In acute exacerbations of bronchial asthma, values were 400-1140 nmol/l and 100-320 nmol/l following treatment. In cases of bronchiectasis, values were 300-340 nmol/l and 200-280 nmol/l following treatment. In diagnosed pneumonia cases values were 1060-11800 nmol/l and 540-700 nmol/l following treatment. In interstitial lung diseases, values ranged from 220-720 nmol/l and 210-510 nmol/l following treatment. Conclusion: Exhaled breath condensate provides a non-invasive means of sampling the lower respiratory tract. Collection of exhaled breath condensate might be useful to detect the oxidative destruction of the lung as well as early inflammation of the airways in a healthy individual with risk factors and comparing the inflammatory response to treatment.

Keywords: Ecocheck, exhaled breath condensate, hydrogen peroxide


How to cite this article:
Nagaraja C, Shashibhushan B L, Sagar, Asif M, Manjunath P H. Hydrogen peroxide in exhaled breath condensate: A clinical study. Lung India 2012;29:123-7

How to cite this URL:
Nagaraja C, Shashibhushan B L, Sagar, Asif M, Manjunath P H. Hydrogen peroxide in exhaled breath condensate: A clinical study. Lung India [serial online] 2012 [cited 2019 Oct 23];29:123-7. Available from: http://www.lungindia.com/text.asp?2012/29/2/123/95303


   Introduction Top


Airway inflammation plays an important role in various respiratory lung diseases, including recurrent wheezing, asthma, cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Several attempts have been made therefore to detect and monitor inflammatory changes and mediators using non-invasive methods. Analysis of exhaled breath condensate (EBC), a novel and a non-invasive method for studying the composition of airway lining fluid, has the potential for assessing airway inflammation. [1] Analysis of EBC is also useful for assessing the response to treatment. [2] This study helps to validate the analysis of EBC by measuring hydrogen peroxide (H2O2 ) concentration in healthy non-smokers, smokers, diseased, and also comparing the response to treatment. Inflammatory cells release H2O2 , which can be detected in EBC. Elevated levels of H2O2 have been found in a number of respiratory disorders, thus H2O2 is considered to be a possible biomarker of airway inflammation.


   Materials and Methods Top


In this hospital-based study, conducted between July 2010 and September 2010, 100 randomly selected subjects were analyzed with EBC H2O2 . Sputum positive tuberculosis patients, pregnant women, children less than 12 yrs and immunocompromised patients were excluded from the study. EBC was collected and analyzed using Ecocheck-Ecosreen (Jaeger, Hoechberg, Germany) device in all 100 subjects. The subjects were instructed to clean the oral cavity with water and then breathe through a mouth piece and a 2 way non-breathing valve, which also serve as a saliva trap. They were asked to breath at a normal frequency and tidal volume wearing a nose clip for a period of 15 min. About 1-3 ml of EBC was collected at −2 to −4°C [Figure 1]. The collected EBC was diluted with equal quantity of dilution buffer. The diluted sample was analyzed in a measuring chamber containing biosensors. [3] The results were analyzed statistically using t test. The amount of condensate generated per exhalation varies among individuals. Minute ventilation remains the major determinant of the amount of condensate over time. The concentration of hydrogen peroxide in exhaled air depends on expiratory flow rate. [4]
Figure 1: Schematic representation of a collection apparatus

Click here to view



   Results Top


Of the 100 cases studied, 23 were healthy individuals with risk factors, like smoking, exposure to air pollution and urbanization. The values of H2O2 in smokers were 200-2220 nmol/l and in non-smokers values were 340-760 nmol/l [Table 1], [Figure 2]. In 10 smokers the standard deviation was 643.135 and in 13 non-smokers standard deviation was 217.279I with significant P value of 0.045 (P<0.05) [Table 2]. In people residing in rural areas values were from 20-140 nmol/l in non-smokers and 180 nmol/l in smokers. H2O2 concentrations were correlated with pack years. In majority of subjects, as the pack years increased, the H2O2 levels were also found to be increased. However in some of the subjects varied H2O2 levels were observed irrespective of pack years. For instance, one subject with 8 pack years had the H2O2 level as high as 2220 nmol/l, whereas in two subjects with 15 pack years, the values were 180 and 340 nmol/l [Table 3].
Figure 2: Analysis in healthy subjects

Click here to view
Table 1: H 2 O 2 concentration in cases of healthy subjects

Click here to view
Table 2: Statistical analysis of H 2 O 2 concentration in healthy subjects

Click here to view
Table 3: Values of H 2 O 2 in relation to pack years

Click here to view


In patients who are known COPD presented with acute exacerbations (as per anthonisen criteria and GOLD criteria), the predicted FEV 1 % varied from 32-65% (48±16%) with H2O2 levels of 540-3040 nmol/l. These patients were treated with bronchodilators and corticosteroids as per treatment protocol. Following treatment, the predicted FEV 1 % varied from 35-71% (53±18%) and the concentrations of H2O2 were reduced to 240-480 nmol/l [Table 4], [Figure 3]. Before treatment standard deviation was 770.076 and following treatment standard deviation was 94.571 with P value of 0.022 [Table 5].
Figure 3: Analysis report in COPD

Click here to view
Table 4: H 2 O 2 concentration and predicted FEV 1 % in COPD

Click here to view
Table 5: Statistical analysis of H 2 O 2 concentration in COPD

Click here to view


In cases of acute exacerbations of bronchial asthma, the values of H2O2 were 400-1140 nmol/l and following treatment the values were reduced to 100-320 nmol/l [Table 6], [Figure 4] and [Figure 5] with a significant P value of 0.002 [Table 7]. In these patients predicted FEV 1 % varied from 18-62% (40±22%) and following treatment the predicted FEV 1 % drastically improved to 68-89% (78±10).
Figure 4: Analysis report in bronchial asthma

Click here to view
Figure 5: Analysis report in bronchial asthma

Click here to view
Table 6: H 2 O 2 concentration and predicted FEV 1 % in bronchial asthma

Click here to view
Table 7: Statistical analysis of H 2 O 2 concentration in asthma

Click here to view


In other conditions like bronchiectasis, values of H2O2 were 300-340 nmol/l and 200-280 nmol/l [Table 8], in pneumonia 1060-11800 nmol/l and 540-700 nmol/l [Table 9], and in patients with interstitial lung diseases 220-720 nmol/l and 210-510 nmol/l [Table 10] before and after treatment, respectively. The P values of the above three conditions could not be calculated as the sample size was small. Spirometry was also performed in all these patients but the lung function tests could not be correlated with H2O2 in all these patients as the sample size was small.
Table 8: H 2 O 2 concentration in Bronchiectasis

Click here to view
Table 9: H 2 O 2 concentration in Pneumonia

Click here to view
Table 10: H 2 O 2 concentration In interstitial lung disease

Click here to view



   Discussion Top


A variety of inflammatory markers present in EBC have been investigated as possible biomarkers of disease activity. [5] EBC contains aerosolized airway epithelial lining fluid particles and volatile compounds. There is increasing evidence that exhaled markers may reflect biochemical changes in airway lining fluid. [6] [Table 11] shows the various markers in exhaled breath. H2O2 was one of the most commonly studied markers in EBC. [7],[8] Lung is constantly exposed to oxygen, so highly susceptible to oxidative stress in the form of reactive oxygen species (super oxide ion, hydroxyl radical, and hydrogen peroxide). These reactive oxygen species produced by active inflammatory cells like neutrophils, macrophages, activated eosinophils, epithelial cells, and endothelial cells. [9] Thus, measurement of concentration of reactive oxygen species in exhaled breath condensate can reflect the underlying inflammation. In the present study, H2O2 measurements were evaluated and analyzed.
Table 11: Contents of exhaled breath condensate

Click here to view


Exhaled breath condensate was measured in cigarette smokers versus healthy control subjects. [10] Cigarette smokers had a 5-fold higher mean expired breath H2O2 level than non-smokers. [11],[12] In another study that attempted to correlate exhaled breath H2O2 with H2O2 generated from the alveolar lining fluid, exhaled H2O2 was 5 × 10 4 times lower than H2O2 produced in the alveolar lining fluid. This difference was attributed to the presence of antioxidants in the lining fluid of the lower respiratory tract. The above study showed that level of H2O2 in exhaled breath condensate of smokers is increased half an hour after combustion of one cigarette. In the present study, the levels of H2O2 were elevated in healthy smokers and also in healthy non-smokers who are residing in urban area compared to those of rural area. These elevated levels can be attributed to constant exposure for vehicle and industrial pollution. The H2O2 values in healthy individuals with risk factors are more than 180 nmol/l, whereas the healthy individuals residing in rural areas with minimal risk factors had values of H2O2 varied from 20-140 nmol/l. Hence, the level of H2O2 below 200 nmol/l can be considered as normal reference value as per our study and needs further studies to support our observation in India.

Dekhuijzen and coworkers demonstrated increased H2O2 in exhaled breath condensate of patients with stable COPD relative to healthy controls with a further increase noted during an acute exacerbation. [13],[14],[15],[16] The effect of corticosteroids on the level of hydrogen peroxide studied by van Beurden et al. [17] Levels of H2O2 also correlated with eosinophils differential counts in induced sputum. In the present study, H2O2 was increased in all stable COPD patients with further increase during acute exacerbations with reduced predicted FEV 1 %. Lower the value of predicted FEV 1 %, higher the elevated H2O2 concentration. These patients with exacerbations after treatment with bronchodilators, corticosteroids (both inhalational and parenteral) showed reduction in H2O2 levels with the improvement in predicted FEV 1 %.

Oxidative stress plays an important pathogenetic role in many inflammatory diseases including asthma. Emelyanov et al. studied the correlation between asthma, concentration of H2O2 and FEV 1 . They concluded that exhaled H2O2 may be useful to assess the degree of airway inflammation and oxidative stress in asthmatic patients and significant negative correlation among exhaled H2O2 and FEV 1 . [18] In the present study, the H2O2 levels were elevated during acute exacerbation with decreased predicted FEV 1 % and reduced H2O2 levels with significant improvement in predicted FEV 1 % in all cases following treatment.

Bronchiectasis, a suppurative lung disease, is characterized by significant pulmonary oxidant stress that can be measured using exhaled breath H2O2 . In a study by Loukides and coworkers, [2] patients with bronchiectasis displayed exhaled H2O2 levels higher than normal controls, and a negative correlation between the H2O2 levels and FEV 1 was documented. In the studied cases of bronchiectasis, H2O2 was raised significantly with reduction in the levels following treatment.

In the pilot study by Mikuls et al., patients with rheumatoid arthritis with interstitial lung diseases had increased levels of exhaled H2O2 compared with controls, suggesting that EBC H2O2 is a potentially useful biomarker. [19] In the present study, in patients with interstitial lung disease, pneumonia H2O2 estimated by EBC were found to be raised and showed decreased values following treatment.

The measurement of the H2O2 marker in exhaled breath condensate can be used routinely for i) early prediction of the ongoing inflammatory process in healthy individuals who are exposed to risk factors, and for educating them in future, ii) early tool of assessing exacerbation of the lung condition and to reduce the morbidity, iii) as a marker in assessing the inflammatory response to treatment. Hence, the detection of H2O2 in EBC can be used for routine clinical practice and research activities.

This type of facility is a rare modality available in India, as per our knowledge. The drawbacks of this facility are that the establishment of the unit is quite expensive and sensors need to be changed for every new patient, which are to be imported and of high cost.


   Conclusion Top


Oxidative stress is implicated in various lung diseases. Its assessment with non-invasive technique is of great value. Collection of exhaled breath condensate is a non-invasive method. Measurement of H2O2 in EBC sample can be used as a method of measuring oxidative destruction in the lung and inflammation of the airways. Even in healthy individuals with risk factors, elevated H2O2 levels in EBC is a general marker for airway inflammation and can be used as an early predictor of the ongoing inflammatory process. This measurement can be carried out easily and its application in inflammatory airway diseases has been extensively studied. Most of the clinical studies reported higher levels of H2O2 in healthy individuals with risk factors and diseased conditions compared to normal subjects without risk factors and also the levels of H2O2 decreased following treatment.

 
   References Top

1.Soyer OU, Dizdar EA, Keskin O, Lilly C, Kalayci O. Comparison of two methods for exhaled breath condensate collection Allergy 2006;61:1016-8.  Back to cited text no. 1
    
2.Loukides S, Horvath I, Wodehouse T, Cole PJ, Barnes PJ. Elevated levels of expired breath hydrogen peroxide in bronchiectasis. Am J Respir Crit Care Med 1998;158:991-4.  Back to cited text no. 2
    
3.Mutlu GM, Garey KW, Robbins RA, Danziger LH, Rubinstein I. Collection and analysis of exhaled breath condensate in humans. Am J Respir Crit Care Med 2001;164:731-7.  Back to cited text no. 3
    
4.Schleiss MB, Holz O, Behnke M, Richter K, Magnussen H, Jorres RA. The concentration of hydrogen peroxide in exhaled air depends on expiratory flow rate. Eur Respir J 2000;16:1115-8.  Back to cited text no. 4
    
5.Loukides S, Koutsokera A, Gourgoulianis KI, Kostikas K. Biomarkers in the exhaled breath condensate of healthy adults: Mapping the path towards reference values. Curr Med Chem 2008;15:620-30.  Back to cited text no. 5
    
6.Kharitonov SA, Barnes PJ. Exhaled markers of pulmonary diseases. Am J Respir Crit Care Med 2001;163:1693-722.  Back to cited text no. 6
    
7.Möller W, Heimbeck I, Weber N, Khadem Saba G, Körner B, Neiswirth M, et al. Fractionated exhaled breath condensate collection shows high hydrogen peroxide release in the airways. J Aerosol Med Pulm Drug Deliv 2010;23:129-35.  Back to cited text no. 7
    
8.Van Hoydonck PG, Wuyts WA, Vanaudenaerde BM, Schouten EG, Dupont LJ, Temme EH. Quantitative analysis of 8-isoprostane and hydrogen peroxide in exhaled breath condensate. Eur Respir J 2004;23:189-92.  Back to cited text no. 8
    
9.Haugen TS, Skjonsberg OH, Kahler H, Lyberg T. Production of oxidants in alveolar macrophages and blood leukocytes. Eur Respir J 1999;14:1100-5.  Back to cited text no. 9
    
10.Isik B, Ceylan A, Isik R. Oxidative stress in smokers and non-smokers. Inhal Toxicol 2007;19:767-9.  Back to cited text no. 10
    
11.Garey KW, Nenhauser MM, Robbins RA, Danziger LH, Rubinstein I. Markers of inflammation in exhaled breath condensate of young healthy smokers. Chest 2004;125:22-6.  Back to cited text no. 11
    
12.Nowak D, Antczak A, Krol M, Pietras T, Shariati B, Bialasiewicz P, et al. Increased content of hydrogen peroxide in the expired breath of cigarette smokers. Eur Respir J 1996;9:652-7.  Back to cited text no. 12
    
13.Rahman I, Adcock IM. Oxidative stress and redox regulation of lung inflammation in COPD. Eur Respir J 2006;28:219-42.  Back to cited text no. 13
    
14.van Beurden WJ, Dekhuijzen PN, Harff GA, Smeenk FW. Variability of exhaled hydrogen peroxide in stable COPD patients and matched healthy controls. Respiration 2002;69:211-6.   Back to cited text no. 14
    
15. Borrill ZL, Roy K, Singh D. Exhaled breath condensate biomarkers in COPD. Eur Respir J 2008;32:472-86.  Back to cited text no. 15
    
16.Kostikas K, Papatheodorou G, Psathakis K, Panagou P, Loukides S. Oxidative stress in expired breath condensate of patients with COPD. Chest 2003;124:1373-80.  Back to cited text no. 16
    
17.van Beurden WJ, Harff GA, Dekhuijzen PN, Van der Poel-Smet SM, Smeenk FW. Effects of inhaled corticosteroids with different lung deposition on exhaled hydrogen peroxide in stable COPD patients. Respiration 2003;70:242-8.  Back to cited text no. 17
    
18.Emelyanov A, Fedoseev G, Abulimity A, Rudinski K, Fedoulov A, Karabanov A, et al. Elevated concentrations of exhaled hydrogen peroxide in asthmatic patients. Chest 2001;120;1136-9.  Back to cited text no. 18
    
19.Mikuls TR, O'Dell JR, Ertl R, Bergman DA, Rennard SI. Examining the exhaled levels of hydrogen peroxide in rheumatoid arthritis: A pilot study. Ann Rheum Dis 2006;65:1252-3.  Back to cited text no. 19
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4], [Table 5], [Table 6], [Table 7], [Table 8], [Table 9], [Table 10], [Table 11]


This article has been cited by
1 Obstructive sleep apnoea and oxidative stress: Hin breath condensate before and during CPAP therapy [Obstruktive Schlafapnoe und oxidativer Stress: Him Atemkondensat vor und im Verlauf einer CPAP-Therapie]
Westhoff, M. and Litterst, P.
Pneumologie. 2012; 66(10): 610-615
[Pubmed]



 

Top
  
 
  Search
 
  
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
    Materials and Me...
   Results
   Discussion
   Conclusion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed2189    
    Printed70    
    Emailed0    
    PDF Downloaded551    
    Comments [Add]    
    Cited by others 1    

Recommend this journal