Home | About us | Editorial Board | Search | Ahead of print | Current Issue | Archives | Instructions | Online submissionContact Us   |  Subscribe   |  Advertise   |  Login  Page layout
Wide layoutNarrow layoutFull screen layout
Lung India Official publication of Indian Chest Society  
  Users Online: 633   Home Print this page  Email this page Small font size Default font size Increase font size
Year : 2018  |  Volume : 35  |  Issue : 6  |  Page : 476-482

Utility of forced expiratory time as a screening tool for identifying airway obstruction and systematic review of English literature

Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India

Correspondence Address:
Dr. Ashutosh Nath Aggarwal
Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/lungindia.lungindia_3_18

Rights and Permissions

Setting: This study was conducted at a pulmonary function laboratory of a tertiary care hospital in North India. Objective: The objective was to study the diagnostic characteristics and clinically useful threshold of forced expiratory time (FET, measured by auscultation over trachea) as a screening tool for identifying airway obstruction and to substantiate the diagnostic utility of FET through a systematic review of English literature. Methods: FET was compared in seventy patients with airway obstruction (Group A) and seventy controls with normal spirometry (Group B). Within-subject reproducibility of FET, and its correlation with spirometric parameters, was assessed. Diagnostic accuracy of FET in detecting airway obstruction was evaluated at various time thresholds. A systematic review of English literature on FET was also carried out. Results: Median FET was significantly longer in Group A (7.04 s [interquartile range (IQR) 6.67–7.70 s] vs. 4.14 s [IQR 3.60–4.68 s], P < 0.001). At a threshold of 5 s, FET had high sensitivity (0.943) and reasonable specificity (0.814) in detecting airway obstruction. FET measurements were reproducible and correlated negatively with forced expiratory volume in first second (FEV1), FEV1/forced vital capacity, and peak expiratory flow. The systematic review yielded 13 publications. At a widely used threshold of 6 s to describe airway obstruction, pooled sensitivity and specificity from five datasets were 0.802 (95% confidence interval [CI] 0.668–0.890) and 0.837 (95% CI 0.570–0.952), respectively. Conclusion: FET of 5 s or more, rather than the commonly recommended threshold of 6 s, should be regarded as abnormal.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded125    
    Comments [Add]    

Recommend this journal