Home | About us | Editorial Board | Search | Ahead of print | Current Issue | Archives | Instructions | Online submissionContact Us   |  Subscribe   |  Advertise   |  Login  Page layout
Wide layoutNarrow layoutFull screen layout
Lung India Official publication of Indian Chest Society  
  Users Online: 621   Home Print this page  Email this page Small font size Default font size Increase font size
ORIGINAL ARTICLE
Year : 2019  |  Volume : 36  |  Issue : 2  |  Page : 94-101

Craniofacial and upper airway profile assessment in North Indian patients with obstructive sleep apnea


1 Department of Pulmonary, Critical Care and Sleep Medicine, Vardhman Mahavir Medical College and Safdarjang Hospital, New Delhi, India
2 Department of Radio-Diagnosis, Vardhman Mahavir Medical College and Safdarjang Hospital, New Delhi, India

Correspondence Address:
Dr. Jagdish Chander Suri
Department of Pulmonary, Critical Care and Sleep Medicine, Vardhman Mahavir Medical College and Safdarjung Hospital, Ansari Nagar, New Delhi
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/lungindia.lungindia_303_18

Rights and Permissions

Introduction: Upper airway imaging can often identify the anatomical risk factors for sleep apnea and provide sufficient insight into the pathophysiology of obstructive sleep apnea (OSA). Materials and Methods: We conducted a case–control, observational study at a tertiary care hospital in North India. All cases and controls underwent lateral cephalometry and magnetic resonance imaging (MRI) for craniofacial and upper airway evaluation. Only the cases had polysomnography testing for confirmation of OSA and assessing the severity of disease. Results: Forty cases and an equal number of matched controls were recruited. On X-ray cephalometry, it was observed that the cases had a significantly larger hyoid mandibular distance and soft palate length; and shorter mandibular length. The MRI cephalometric variables were significantly different, the soft palate length, tongue length, and submental fat were longer while the retropalatal and retroglossal distance was shorter amongst the cases. A statistically significant positive correlation was found between the cephalometric parameters and the indices of severity of OSA. An increased hyoid mandibular distance and soft palate length, and a decrease in the lower anterior facial height were found to be predictive of severe OSA (Apnea–Hypopnea Index –>30/h). An increased hyoid mandibular distance, soft palate length, and the tongue length and a reduced mandibular length were found to be predictive of need for continuous positive airway pressure (CPAP) pressures of ≥15 cm H2O. There were significant differences between the cephalometric parameters of the Indian OSA patients and patients from other ethnicities reported in the literature. Conclusions: OSA patients had a significantly smaller upper airway compared to age-, sex-, and body mass index-matched controls and cephalometric variables correlated with the indices of OSA severity. The cephalometric assessment was also predictive of severe OSA and the need for higher pressures of CPAP. This indicates the important role of upper airway anatomy in the pathogenesis of OSA.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed617    
    Printed45    
    Emailed0    
    PDF Downloaded166    
    Comments [Add]    

Recommend this journal