Home | About us | Editorial Board | Search | Ahead of print | Current Issue | Archives | Instructions | Online submissionContact Us   |  Subscribe   |  Advertise   |  Login  Page layout
Wide layoutNarrow layoutFull screen layout
Lung India Official publication of Indian Chest Society  
  Users Online: 952   Home Print this page  Email this page Small font size Default font size Increase font size

Year : 2008  |  Volume : 25  |  Issue : 1  |  Page : 1-3 Table of Contents   

Asthma in the obese: Yet another reason to lose weight

Department of Chest & TB, Member Secretary, Medical Education Unit, SMS Medical College, Jaipur., India

Correspondence Address:
P R Gupta
Department of Chest & TB, Member Secretary, Medical Education Unit, SMS Medical College, Jaipur.
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0970-2113.44128

Rights and Permissions

How to cite this article:
Gupta P R. Asthma in the obese: Yet another reason to lose weight. Lung India 2008;25:1-3

How to cite this URL:
Gupta P R. Asthma in the obese: Yet another reason to lose weight. Lung India [serial online] 2008 [cited 2021 Jan 27];25:1-3. Available from: https://www.lungindia.com/text.asp?2008/25/1/1/44128

Over 1 billion people around the world are overweight. [1] Indeed, obesity has now emerged as an important cause of morbidity and mortality in mankind. It is a significant risk factor for type 2 diabetes mellitus, hypertension, atherosclerosis, rheumatoid arthritis and cancer, more so when the weight gain is in and around the abdomen. [2] Of late, it has been realised that obesity is a risk factor for asthma too. Further, it may alter the severity and control of asthma. Since the prevalence of both, obesity and asthma, is rising, it is now pertinent that all the respiratory physicians should have knowledge about this adverse relationship.

The effect of weight gain on asthma has been examined in several epidemiological studies in adults [3] and children. [4] Majority of these studies have shown an increased risk of incident asthma with an increase in body mass index (BMI). Importantly, obesity antedates asthma. Experimental data from studies in obese mice also support the causal relationship between obesity and asthma.

The major criticism of the epidemiological studies has been the basis of diagnosis of asthma. Obesity impairs ventilatory functions i.e. forced expiratory volume in one second (FEV 1 ), forced vital capacity (FVC), total lung capacity and expiratory reserve volume. [5] Besides, it may reduce respiratory muscle strength, decrease thoracic cage compliance and impede diaphragmatic excursion, especially when it is massive and central. The resultant increase in work of breathing may lead to the perception of increased respiratory effort i.e. dyspnoea. The latter may be confused as asthma. Thus, there is a risk of over diagnosing asthma in the obese. Further, it is apprehended that the correlation between obesity and asthma may not be causally related but may be due to existence of common risk factors.

Several mechanisms have been proposed to explain the biological basis for the relationship between obesity and asthma. Common genetics, [6] obesity related increase in serum levels of pro-inflammatory adipokines [7] or decrease in anti­-inflammatory adiponectins [8] and many of the obesity related bio-chemical changes/ co-morbidities may contribute.

Dixon et al [9] noted the positive correlation between serum interleukin (IL-6) levels and asthma severity. Use of anti-IL-6 antibodies decreased airway responsiveness in obese but not in lean mice. [10] Monocyte chemotactic proteins (MCPs), which polarise T cells from T helper type I (Th I) to Th2 phenotype, were found to be up regulated in the airways of obese asthma patients. [11] Increase in levels of other adipokines like eotaxin, visfatin, complement, plasminogen activator inhibitor (PAI-I) and tumor necrosis factor α (TNFα) have also been implicated. [12]

Aerosol of ovalbumin caused marked increase in BAL eosinohils and Th2 cytokines in sensitized mice treated with buffer but not in those treated with full­length murine recombinant adiponectin, [13] suggesting an anti-inflammatory role of the latter in asthma.

Increased serum leptin predicted incident asthma in boys [14] and to some extent in women [15] and exogenously administered leptin augmented ozone or allergen induced airway inflammation, [16] suggesting its role. Hypercholesterolemia may also contribute, acting independently or in combination with other factors. Sleep disordered breathing (SDB) and gastro-esophageal reflux disease (GERD), which are induced by obesity, may cause asthma independent of the parent disorder. Relationship, if any, between asthma and other common obesity related conditions such as type 2 diabetes, atherosclerosis and hypertension is yet to be studied.

Female sex hormones have also been implicated [17] as the effects of obesity on asthma are greater in women than men.

Conflicting data are available as to whether obesity increases asthma severity. An increase in severity of asthma with incident obesity was observed by Akerman et al [18] but Lavoie et [19] could not find such a correlation. Cassol et al [20] found it only in women.

Perception of dyspnoea in an obese may be due to obesity related changes on the respiratory system or the related co-morbidities like GERD. Therefore, a symptom based diagnosis of asthma or its severity is not enough and an objective diagnosis of asthma based on spirometry is mandatory in an overweight patient.

Asthma is more difficult to control in obese than lean asthma patients. Thus, Saint-Pierre et al [21] found that compared to lean patients, overweight patients who were initially poorly controlled, were more likely to remain so, despite guideline based treatment. Obesity related changes in drug distribution and duration of effect, interactions between some therapeutic agents used to treat co­morbidities like SDB and GERD and the altered hormonal environment of the obese patient may be responsible for this infirmity. Peters-Golden et al [22] observed that the response to montelukast increased with BMI suggesting its role in treatment of obese asthma patients. Relative risk for an exacerbation was greater in obese asthma patients treated with low dose theophylline as compared to lean individuals suggesting a possible contraindication for the drug. [9] Thus there is a clear need to improvise new therapeutic strategies for these patients, including the simultaneous control of comorbidities like GERD.

Novel therapeutic approaches are being considered in obese asthma patients. Thiazolidinediones (used in type­2 diabetes mellitus) increase serum adiponectin levels. It reduceds airway inflammation in animal models of asthma [23] and is worth evaluation. Etanercept (soluble TNFa receptor) [24] and infliximab (TNFa antibody) [25] have been shown to improve airway function or reduce exacerbations in asthma patients. Anti immunoglobuline (IgE) may also find a place in management of asthma in obese.

Surgically induced weight reduction has resulted in significant improvements in asthma prevalence, severity, medication use, and hospitalizations in adults. [26] In another study, diet induced weight loss also augmented airway function in obese asthma patients. [27] Therefore, the best therapeutic strategy for obese asthma patient is to lose weight. The effect of weight control on asthma in children remains to be established.

Is asthma in obese preventable? Data on development of asthma in children indicate that obesity is a risk factor for asthma during early childhood. [28] It is, therefore, conceivable that interventions aimed at controlling weight gain during first few years of life may be effective in reducing or at least delaying the incident asthma. Studies are urgently needed to unravel this issue of vital importance. Till then, the BMI of the patient should form an important consideration while prescribing asthma medications.

   References Top

1.International obesity taskforce (IOTF). Available www.iotf.or http://www.iotf.or indes.asp.  Back to cited text no. 1    
2.Mokdad AH, Marks JS, Stroup OF, et al. Actual causes of death in the United States, 2000. JAMA 2004; 291: 1238-45.  Back to cited text no. 2    
3.Nystad W, Meyer HE, Nafstad P, et al. Body mass index in relation to adult asthma among 135000 Norwegian men and women. Am J Epidemiol 2004; 160: 969-976.  Back to cited text no. 3  [PUBMED]  [FULLTEXT]
4.Flaherman V, Rutherford GW, A meta-analysis of the effect of high weight on asthma. Arch Dis Child 2006; 91: 334-339.  Back to cited text no. 4    
5.Rubinstein I, Zamel N, DuBarry L, et al. Airflow limitation in morbidly obese, nonsmoking men. Ann Intern Med 1990; 112: 828-32.  Back to cited text no. 5  [PUBMED]  
6.Beuther DA, Weiss ST, Sutherland ER. Obesity and asthma. Am J Respir Crit Care Med 2006; 174: 112-119.  Back to cited text no. 6  [PUBMED]  [FULLTEXT]
7.Scherer PE, Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes 2006; 55: 1537-1545.  Back to cited text no. 7    
8.Yamauchi T, Kamon J, Waki , et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001; 7: 941-946.  Back to cited text no. 8    
9.Dixon AE, Shade OM, Cohen RI, et al. Effect of obesity and clinical presentation and response to treatment in asthma. J Astma 2006; 43: 553-558.  Back to cited text no. 9    
10.Lang JE, Williams E, Flynt L, et al. IL-6 contributes to airway responses to acute ozone exposure in lean and obese mice [abstract]. Proc Am Torac Soc 2006; 3: A821.  Back to cited text no. 10    
11.Gu L, Tseng S, Horner RM, et al.Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 2000,-404.- 407-411.  Back to cited text no. 11    
12.Shore SA. Obesity and asthma: cause for concern. Curr Opin Pharmacol 2006; 6: 230-236.  Back to cited text no. 12  [PUBMED]  [FULLTEXT]
13.Shore SA, Terry RD, Flynt L, et al. Adiponectin attenuates allergen-induced airway inflammation and hyperresponsiveness in mice. J Allergy Clin Immunol2006; 118: 389-395.  Back to cited text no. 13  [PUBMED]  [FULLTEXT]
14.Guier N, Kirerleri E, Ones U, et al. Leptin : does it have any role in childhood astma? J Allergy Clin Immunol2004; 114: 254-259.  Back to cited text no. 14    
15.Sood A, Ford ES, Camargo CA Jr. Association between leptin and asthma in adults. Thorax 2006; 61: 300-305.  Back to cited text no. 15  [PUBMED]  [FULLTEXT]
16.Shore SA, Rivera-Sanchez YM, Schwartzman IN, Johnston RA. Responses to Ozone are increased in obese mice. J Appl Physiol 2003; 95: 938-945.  Back to cited text no. 16  [PUBMED]  [FULLTEXT]
17.Kim S, Camargo CA, Jr. Sex-race differences in the relationship between obesity and asthma: the behavioral risk factor surveillance system, 2000. Ann Epidemiol 2003; 13: 666-673.  Back to cited text no. 17    
18.Akerman MJ, Calacanis CM, Madsen MK. Relationship between asthma severity and obesity. J Asthma 2004; 41: 521-526.  Back to cited text no. 18  [PUBMED]  
19.Cassol V, Rizzato TM, Teche SP, et al. Obesity and its relationship with asthma prevalence and severity in adolescents from southern Brazil. J Asthma 2006- ,43: 57-60.  Back to cited text no. 19    
20.Lavoie KL, Bacon SL, Labrecque M, et al. Higher BMI is associated with worse asthma control and quality of life but not asthma severity. Respir Med 2006; 100: 648-657.  Back to cited text no. 20  [PUBMED]  [FULLTEXT]
21.Saint-Pierre P, Bourdin A, Chanez P, et al. Are overweight asthmatics more difficult to control? Allergy 2006- ,61: 79-84.  Back to cited text no. 21  [PUBMED]  [FULLTEXT]
22.Peters- Golden M, Swern A, Bird SS, et al. Influence of body mass index on the response to asthma controller agents. Eur Respir J 2006; 27: 495-503.  Back to cited text no. 22    
23.Shore SA, Schwartzman IN, Mellema MS, et al. Effect of leptin on allergic airway responses in mice. J Allergy Clin Immunol2005; 115: 103-109.  Back to cited text no. 23  [PUBMED]  [FULLTEXT]
24.Berry MA, Hargadon B, Shelley M, et al. Evidence of a role of tumor necrosis factor alpha in refractory asthma. N Engl J Med 2006; 354: 697-708.  Back to cited text no. 24  [PUBMED]  [FULLTEXT]
25.Erin EM, Leaker BR, Nicholson GC, et al. The effects of a monoclonal antibody directed against tumor necrosis factor-a (TNF-a) in asthma. Am J Respir Crit Care Med 2006- ,13 July [Epub ahead of print].  Back to cited text no. 25    
26.Spivak H, Hewitt MF, Onn A, Half EE. Weight loss and improvement of obesity-related illness in 500 US patients following laproscopic adjustable gastric banding procedure. Am J Surg 2005- ,189:: 27-32.  Back to cited text no. 26  [PUBMED]  [FULLTEXT]
27.Stenius-Aamiala B, Poussa T, Kvarnstrom J, et al. Immediate and long term effects of weight reduction in obese people with asthma: randomized controlled study. BMJ 2000; 320: 827-­832.  Back to cited text no. 27    
28.Mannino OM, Mott J, Ferdinands JM, et al. Boys with high body masses have an increased risk of developing asthma: findings from the National Longitudinal Survey of Youth (NLSY). Int J Obes (Lond) 2006- ,30: 6-13.  Back to cited text no. 28    


    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

  In this article

 Article Access Statistics
    PDF Downloaded362    
    Comments [Add]    

Recommend this journal