Home | About us | Editorial Board | Search | Ahead of print | Current Issue | Archives | Instructions | Online submissionContact Us   |  Subscribe   |  Advertise   |  Login  Page layout
Wide layoutNarrow layoutFull screen layout
Lung India Official publication of Indian Chest Society  
  Users Online: 1118   Home Print this page  Email this page Small font size Default font size Increase font size

  Table of Contents    
ORIGINAL ARTICLE
Year : 2018  |  Volume : 35  |  Issue : 4  |  Page : 301-306  

Obstructive Sleep Apnea in a rural population in South India: Feasibility of health care workers to administer level III sleep study


1 Department of Pulmonary and Sleep Medicine, St. John's Medical College, Bengaluru, Karnataka, India
2 Department of Community Medicine, St. John's Medical College, Bengaluru, Karnataka, India

Date of Web Publication26-Jun-2018

Correspondence Address:
Dr. Uma Devaraj
Department of Pulmonary and Sleep Medicine, St. John's Medical College, Sarjapur Road, Bengaluru, Karnataka
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/lungindia.lungindia_433_17

Rights and Permissions
   Abstract 


Objectives: To estimate the occurrence of obstructive sleep apnea (OSA) and its risk factors in a rural Indian population using screening questionnaire and Level III sleep study. To determine the feasibility to train community health workers to administer Level III sleep study in the high-risk population. Materials and Methods: The study was conducted from seven villages with adult population of 2247, in Mugalur, near Bengaluru, from January to April 2014. Berlin questionnaire was used to screen 321 participants chosen by stratified random sampling. A total of 26 out of 321 patients underwent Level III sleep study at home, administered by the health workers, who were trained in three sessions to hook up the machine. Data were verified by a certified sleep physician. Results: The mean age was 39.43 ± 15.6 years with the M:F ratio of 0.98:1. Prevalence of risk of OSA by Berlin questionnaire was 8.72% (95% confidence interval [CI] 5.63, 11.81) in the total population, 7.4% in males and 11.7% in females. Older age (odds ratio [OR] 3.97; CI 1.63, 9.6), hypertension (OR 11; CI 4.3, 28.2), obesity (OR 2.35; CI 1, 5.5), and higher Mallampati score (OR 3.78; CI 1.7, 8.4) were significantly associated with high risk of OSA (P = 0.0001–0.04). Twenty-six patients underwent Level III sleep study and OSA was diagnosed in 12 patients. The mean apnea–hypopnea index (AHI) of this group was 9.7/h. The prevalence of OSA by AHI criteria was 3.74%. Conclusions: OSA is underdiagnosed in rural populations, although risk factors are present. Training community health workers to administer Level III sleep study is a feasible and cost-effective strategy.

Keywords: Berlin questionnaire, community health workers, obstructive sleep apnea, rural


How to cite this article:
Pinto AM, Devaraj U, Ramachandran P, Joseph B, D'Souza GA. Obstructive Sleep Apnea in a rural population in South India: Feasibility of health care workers to administer level III sleep study. Lung India 2018;35:301-6

How to cite this URL:
Pinto AM, Devaraj U, Ramachandran P, Joseph B, D'Souza GA. Obstructive Sleep Apnea in a rural population in South India: Feasibility of health care workers to administer level III sleep study. Lung India [serial online] 2018 [cited 2021 Jun 25];35:301-6. Available from: https://www.lungindia.com/text.asp?2018/35/4/301/235046




   Introduction Top


The abnormal collapse of the pharyngeal airway during sleep leading to apneic episodes and the resulting repetitive arousals is termed as obstructive sleep apnea (OSA).[1] OSA is associated with worsening hypertension, arrhythmias, stroke, and myocardial infarction.[2],[3],[4]

Various global epidemiologic studies have demonstrated the prevalence of OSA to vary widely from 6·5% and 9% in women and between 17% and 31% in men.[1],[5] However, more recent literature quotes the prevalence of OSA between the age group of 30 and 70 years as around 34% and 17% in men and women, respectively.[6]

Young et al. estimated that among middle-aged adults, 1 in 20 has clinically undiagnosed OSA.[1] Mirrakhimov et al. have concluded from a systematic review of 47,957 participants, that there is a paucity of prevalence studies from Asia.[7]

In India, Udwadia et al. have estimated the prevalence of OSA in urban Indian population as 7.5%,[8] whereas increased prevalence of 13.5% was noted by Sharma et al.[9]

Approximately 70% of India's 1.2 billion population reside in rural areas, but greater connectivity and advances in infrastructure and technology have made the rural population to adopt an increasingly urban lifestyle. This has translated to progressively increasing the prevalence of smoking and noncommunicable diseases such as cardiovascular diseases [10],[11] which are strongly associated with OSA. Snoring and sleep during daytime are culturally acceptable in India; hence many people suffering from OSA remain undiagnosed.[8] Undiagnosed OSA is a major noncommunicable public health risk.

There are no studies of OSA and potential risk factors associated with OSA in the rural population in India. OSA is a treatable disease. Early identification and treatment would help to prevent morbidity and complications due to OSA.

This study aims to address this deficiency and to add strength to the evidence that OSA is probably as prevalent in the rural population as in the urban areas.


   Materials and Methods Top


Primary objective

(1) To estimate the occurrence of OSA in a rural setting using a stepwise model of screening questionnaire and Level III sleep study and (2) To assess the feasibility to train community health workers to conduct a Level III sleep study.

Secondary objective

The secondary objective was to describe the risk factors associated with OSA in a rural population.

Participants and method

A stratified random sample from a rural population of 2247 adults in 7 villages, located in Mugalur, 56 km from Bengaluru, were interviewed using a standardized questionnaire (modified Berlin questionnaire [validated in Indian population] and Epworth Sleepiness Score [ESS]). Mugalur and the near-by villages were chosen as the study site, as our institution has an outreach primary medical center in Mugalur. The study was initiated after obtaining approval from St. John's Medical College Ethics Review Board.

The information of total adult population in the seven villages was taken from the national census data and every seventh individual on the list was approached for inclusion in the study [Figure 1]. It was predetermined that the next person on the list would be approached if a subject did not consent for the study. However, none of the participants denied consent. A predefined pro forma was used to accrue data after obtaining written informed consent from the patient. Author (AMP) visited the rural area during weekends and college holidays to collect data by a house-to-house survey, visiting the preselected participant at their home.
Figure 1: Study protocol

Click here to view


Inclusion criteria: All the participants above 18 years of age were included. Exclusion criteria: Since this was a prevalence study, no participant was excluded.

Data regarding the demographics, smoking history, alcohol use, and comorbid illness were collected. Socioeconomic status was assessed by modified Kuppuswamy scale.[12] Data regarding sleep were obtained using modified Berlin questionnaire (validated in Indian population)[13] and ESS.

Participants categorized as high risk for OSA (two or more checked categories in Berlin questionnaire) were subjected to a Level III sleep study (Resmed Apnea-link plus ) in the comfort of their home. This device uses noninvasive flow monitoring, pulse oximetry, and thoracic and abdominal bands to define airflow obstruction by the absence of flow despite continuing ventilatory effort; it is widely used as a screening test for OSA before polysomnography referral and has a sensitivity of at least 85% for any OSA and near 100% for moderate-to-severe OSA.[14],[15],[16] The community health workers (four workers) in the primary health center in Mugalur were trained, in three 1 h sessions, about the sleep disorder, communication skills, and to hook-up the Level III sleep screener in the study participants. The community health worker visited the participants' home and connected the sleep screener at night. They collected the sleep screener on the next day morning. The sleep studies were retrieved and stored in the primary health center's computer and later transported to our center for analysis and interpretation. The sleep screening studies were scored by two trained technicians and verified by a certified sleep specialist (UD). participants positive for OSA (apnea–hypopnea index [AHI] ≥5) were offered further management.

Outcome measures

The presence of OSA was defined by an AHI of ≥5/h on the sleep study. Apnea was defined as per AASM scoring manual (version 2.0.2)[17] (There is a drop in the peak signal excursion by ≥90% of preevent baseline using an oronasal thermal sensor and signal drop lasts for ≥10 s). Hypopnea is defined when the peak signal excursions drop by ≥30% of preevent baseline and the duration of signal drop is ≥10 s along with ≥3% oxygen desaturation from preevent baseline. Oxygen desaturation index was defined as average number of desaturation ≥4%/h.

Sample size

To estimate OSA prevalence of 6%, with a power of 80% and an alpha error of 5%, the calculated sample size was 268 participants.

Statistics

The descriptive data were expressed as mean, median, standard deviation, and range. Multivariate binary logistic regression was used to analyze the effect of risk factors on the prevalence of OSA. Chi-square test and Mann–Whitney U-test were used to compare risk factors between the participants who were positive and negative for OSA. P < 0.05 was considered statistically significant. Data collected were analyzed with SPSS version 17 (SPSS Inc, Chicago, IL, USA).


   Results Top


The total adult population in 7 villages in rural Mugalur was 2247. Three hundred and twenty-one participants were selected from the census data, by stratified random sampling with a sampling interval of 7. The mean age of the population was 39.43 ± 15.6 years (range- 18–90 years) with the male: female ratio of 0.98:1. The mean BMI in the high-risk category by Berlin questionnaire (27.9 kg/m 2) was significantly higher than that seen in the low-risk category (23.7 kg/m 2)

The prevalence of risk of OSA by Berlin questionnaire was 8.72% (95% confidence interval [CI] 5.63, 11.81) in the total study population, 7.4% in males and 11.7% in females [Table 1]. The risk for OSA was higher in females, but it was not statistically significant. The factors such as older age (OR-3.97; CI 1.63, 9.6), hypertension (odds ratio [OR]-11; CI 4.3, 28.2), obesity (OR-2.35; CI 1, 5.5), and higher Mallampati score (OR-3.78; CI 1.7, 8.4) were significantly associated with high risk of OSA [Table 1]. Conversely, the other parameters such as socioeconomic status, smoking, alcohol use, diabetes mellitus, and neck circumference measured were similar in both risk groups.
Table 1: Characteristics of high- and low-risk groups by Berlin questionnaire

Click here to view


Among the 321 participants, 28 participants were in the high-risk category by Berlin questionnaire, of whom 26 underwent the Level III sleep study, as two participants withdrew consent. Four studies were technically unsatisfactory (for reasons such as flow sensors were disconnected, recording available for 2–3 h only). OSA was diagnosed in 12 participants, of whom 7 were male. The mean AHI of this group was 9.7/h. One outlier had an AHI of 53.2/h, hence was not included in statistical analysis to estimate the mean AHI. The prevalence of OSA by AHI criteria was 3.73%.


   Discussion Top


India is the second most populous country in the world with a total population of 1210.1 million and 833.1 million (68.84%) of them reside in rural areas as per national census data in 2011.[18] The growth rate of the rural population is 31.8% as against 12.18% in the urban population.

Swaminathan et al. have exposed that more than 50% of the rural population had a metabolic disorder (diabetes/prediabetes), about 40% had suboptimally controlled hypertension and one-third population had dyslipidemia.[19] Despite the current prevalence of noncommunicable diseases being lower in the rural population than in urban areas, the burden of disease is huge considering the higher number of people residing in the rural areas.

Despite the fact that noncommunicable diseases such as cardiovascular diseases, diabetes, and hypertension are on the rise in rural population and their implicated risk with OSA, the presence of OSA in rural areas remains unexplored.

OSA has been implicated as a causal factor in atherogenesis leading to stroke and myocardial infarction, secondary to exposure to chronic intermittent hypoxia. OSA has caused arrhythmias and sudden cardiac death.[20] People suffering from OSA, find difficulty in concentrating and find themselves falling asleep at work, while watching TV or even when driving leading to accidents on the road and at workplace.[21] Other neurologic complications include memory problems, morning headaches, and depression.[22] Due to the nonspecific symptoms, a large proportion of OSA is not suspected and are left undiagnosed.

Prevalence of obstructive sleep apnea in rural population

Our study has evinced that the prevalence of risk of OSA is less in rural population (8.7%) when compared to urban population (9.7%–13.5%). This is in contrast to a Turkish study, where rural participants suffered from more snoring and apneas when compared to urban participants (52.6% vs. 46.6%).[23]

The prevalence of confirmed OSA in rural population (3.73%) is comparable to the prevalence of other noncommunicable disease such as diabetes in rural India (3%–8.3%).[24] This fact highlights that OSA is an important contributor of modifiable noncommunicable disease.

There are many hospital-based and urban area-based studies on OSA reported from India.[25],[26],[27],[28],[29] A systematic literature search did not reveal any prior studies on the prevalence of OSA in rural India. More studies are essential, targeting rural population in various parts of India, to unmask the undiagnosed OSA.

Risk factors for obstructive sleep apnea in rural population

Various studies across the world, done on the prevalence of OSA, have estimated it to be ranging from 4.1%, 6%,[30],[31] to 29.4%[32] based on questionnaires and 11.4% diagnosed by full polysomnography.[33]

These studies discuss parameters such as increasing age, male sex, obesity, loud snoring, urban residency, smoking and drinking status, and lower socioeconomic status as risk factors for OSA.

Our study also coincides with the prevalence rate and the risk factors discussed in the other parts of the world, barring a few which are mentioned below.

It is worrisome to note that obesity, one of the important risk factor, is noted to be prevalent in the current study population, with 53.27% (171/321) of them having a BMI ≥25 kg/m 2 (Asian standards).[34] This evidence shows that obesity is increasing in the rural population. This fact also refutes previous studies, which have noted obesity to be more prevalent in urban population in comparison to rural population, since the majority of the rural people are engaged in physically demanding jobs such as agricultural and labor work.[35]

In the current study, socioeconomic status could not be assessed as a risk factor as variance among the study participants was minimal. Respiratory diseases and smoking also could not be identified as significant risk factors. This was due to the small number of participants having the said risk factors.

Portable monitoring/diagnostics

Previous clinical trials have shown that home portable monitoring is accurate and feasible for the diagnosis of OSA in a high-risk urban population.[36] The feasibility of an unattended two channel device to detect OSA was studied in rural Queensland and New South Wales.[37] The investigators had shown that 93% of the studies were technically adequate. Our study shows a comparable adequacy of 86.4%.

A stepwise model of screening questionnaire followed by home oximetry was proven as an effective approach to identify OSA in a primary care setting.[38] Our study also confirms this fact. Rural population have poor access to higher medical centers for sophisticated testing, and hence, the strategy of initial screening, diagnosis, and further referral saves valuable time and resources for the patient and the provider.

Community health worker administered sleep study

There were no previous studies available in literature (PubMed, Scopus), reporting on community health workers administering sleep study. Clinical guidelines recommend that “an experienced sleep technologist must apply the sensors or directly educate patients in sensor application.”[39] The current study proves the feasibility of training community health workers to successfully hook-up the Level III sleep study device. Three 1 h sessions were adequate to train the community health workers about the need for the study and how to connect the machine. Our study shows a technical adequacy of 86.4%. This provides us with a low-cost and feasible solution involving community health workers, in a rural population in which OSA is largely undiagnosed.

Limitations of the study

A Level I polysomnogram comparison to validate the Level III sleep study in the rural population could not be done due to logistics challenge. A Level I polysomnogram is not accessible to the rural population and our study was designed based on this realistic understanding. A few people who scored as low risk by Berlin questionnaire might have missed the diagnosis of OSA as they were not enrolled into the second phase sleep study.


   Conclusions Top


The prevalence of OSA by AHI criteria in rural India is 3.73%. When extrapolating this data to the total rural population of India, which is 974.3 million, the prevalence of OSA amounts to 36.34 million individuals. The burden of undiagnosed OSA is huge when considering this rural population. This condition is underdiagnosed in rural and urban settings, although similar risk factors are present.

Questionnaires are an easy and reliable method to distinguish between high- and low-risk individuals. Older patients with hypertension, obesity, and Mallampati score of 3 or 4 should be evaluated for OSA with a screening questionnaire. In rural populations, there are inadequate facilities for diagnosis of OSA. This can be overcome using a Level III sleep study device as used in this study.

This stratagem of initial screening by questionnaire followed by home-based Level III sleep studies in the high-risk population improves health care by unmasking previously undiagnosed OSA. Trained community health workers can be a worthwhile resource, to resolve the conundrum of undiagnosed OSA.

Acknowledgments

The authors would like to thank Dr. Geethu Maria, Mr. Shivaraju, Mugalur outreach center, and the community health workers for their support in conducting the Level III sleep studies.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S, et al. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 1993;328:1230-5.  Back to cited text no. 1
    
2.
De Torres-Alba F, Gemma D, Armada-Romero E, Rey-Blas JR, López-de-Sá E, López-Sendon JL, et al. Obstructive sleep apnea and coronary artery disease: From pathophysiology to clinical implications. Pulm Med 2013;2013:768064.  Back to cited text no. 2
    
3.
Lee CH, Khoo SM, Tai BC, Chong EY, Lau C, Than Y, et al. Obstructive sleep apnea in patients admitted for acute myocardial infarction. Prevalence, predictors, and effect on microvascular perfusion. Chest 2009;135:1488-95.  Back to cited text no. 3
[PUBMED]    
4.
Devaraj U, Ramachandran P, D'souza GA. Obstructive sleep apnea in patients with myocardial infarction: Experience from a tertiary care hospital in South India. Heart India 2013;1:4.  Back to cited text no. 4
  [Full text]  
5.
Heinzer R, Vat S, Marques-Vidal P, Marti-Soler H, Andries D, Tobback N, et al. Prevalence of sleep-disordered breathing in the general population: The HypnoLaus study. Lancet Respir Med 2015;3:310-8.  Back to cited text no. 5
[PUBMED]    
6.
Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM, et al. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol 2013;177:1006-14.  Back to cited text no. 6
    
7.
Mirrakhimov AE, Sooronbaev T, Mirrakhimov EM. Prevalence of obstructive sleep apnea in Asian adults: A systematic review of the literature. BMC Pulm Med 2013;13:10.  Back to cited text no. 7
[PUBMED]    
8.
Udwadia ZF, Doshi AV, Lonkar SG, Singh CI. Prevalence of sleep-disordered breathing and sleep apnea in middle-aged urban Indian men. Am J Respir Crit Care Med 2004;169:168-73.  Back to cited text no. 8
[PUBMED]    
9.
Sharma SK, Kumpawat S, Banga A, Goel A. Prevalence and risk factors of obstructive sleep apnea syndrome in a population of Delhi, India. Chest 2006;130:149-56.  Back to cited text no. 9
[PUBMED]    
10.
Gupta R, Gupta VP. Meta-analysis of coronary heart disease prevalence in India. Indian Heart J 1996;48:241-5.  Back to cited text no. 10
[PUBMED]    
11.
Mishra S, Joseph RA, Gupta PC, Pezzack B, Ram F, Sinha DN, et al. Trends in bidi and cigarette smoking in India from 1998 to 2015, by age, gender and education. BMJ Glob Health 2016;1:e000005.  Back to cited text no. 11
[PUBMED]    
12.
Ravi Kumar BP, Dudala SR. Kuppuswamy's socio-economic status scale – A revision of economic parameter for 2012. Int J Res Dev Health 2013;1:2-4.  Back to cited text no. 12
    
13.
Sharma SK, Vasudev C, Sinha S, Banga A, Pandey RM, Handa KK, et al. Validation of the modified berlin questionnaire to identify patients at risk for the obstructive sleep apnoea syndrome. Indian J Med Res 2006;124:281-90.  Back to cited text no. 13
[PUBMED]  [Full text]  
14.
El Shayeb M, Topfer LA, Stafinski T, Pawluk L, Menon D. Diagnostic accuracy of level 3 portable sleep tests versus level 1 polysomnography for sleep-disordered breathing: A systematic review and meta-analysis. CMAJ 2014;186:E25-51.  Back to cited text no. 14
[PUBMED]    
15.
Aurora RN, Swartz R, Punjabi NM. Misclassification of OSA severity with automated scoring of home sleep recordings. Chest 2015;147:719-27.  Back to cited text no. 15
[PUBMED]    
16.
Chai-Coetzer CL, Antic NA, McEvoy RD. Ambulatory models of care for obstructive sleep apnoea: Diagnosis and management. Respirology 2013;18:605-15.  Back to cited text no. 16
[PUBMED]    
17.
Berry RB, Brooks R, Gamaldo CE, Harding SM, Lloyd RM, Marcus CL, et al. The AASM Manual for the Scoring of Sleep and Associated Events. Available from: http://www.aasmnet.org/resources/pdf/scoring-manual-preface.pdf. [Last accessed on 2017 Mar 23].  Back to cited text no. 17
    
18.
The Hindu. About 70 per cent Indians Live in Rural Areas: Census Report. The Hindu 2011. p. 1-2. Available from: http://www.thehindu.com/news/national/About-70-per-cent-Indians-live-in-rural-areas-Census-report/article13744351.ece. [Last accessed on 2017 Mar 26].  Back to cited text no. 18
    
19.
Swaminathan K, Veerasekar G, Kuppusamy S, Sundaresan M, Velmurugan G, Palaniswami NG, et al. Noncommunicable disease in rural India: Are we seriously underestimating the risk? The nallampatti noncommunicable disease study. Indian J Endocrinol Metab 2017;21:90-5.  Back to cited text no. 19
    
20.
Bolden N, Smith CE, Auckley D. Avoiding adverse outcomes in patients with obstructive sleep apnea (OSA): Development and implementation of a perioperative OSA protocol. J Clin Anesth 2009;21:286-93.  Back to cited text no. 20
[PUBMED]    
21.
Pradeep Kumar VG, Bhatia M, Tripathi M, Srivastava AK, Jain S. Obstructive sleep apnoea: A case-control study. Neurol India 2003;51:497-9.  Back to cited text no. 21
[PUBMED]    
22.
Usmani ZA, Chai-Coetzer CL, Antic NA, McEvoy RD. Obstructive sleep apnoea in adults. Postgrad Med J 2013;89:148-56.  Back to cited text no. 22
[PUBMED]    
23.
Ekici M, Ekici A, Keles H, Akin A, Karlidag A, Tunckol M, et al. Risk factors and correlates of snoring and observed apnea. Sleep Med 2008;9:290-6.  Back to cited text no. 23
[PUBMED]    
24.
Anjana RM, Pradeepa R, Deepa M, Datta M, Sudha V, Unnikrishnan R, et al. Prevalence of diabetes and prediabetes (impaired fasting glucose and/or impaired glucose tolerance) in urban and rural India: Phase I results of the Indian council of medical research-India DIABetes (ICMR-INDIAB) study. Diabetologia 2011;54:3022-7.  Back to cited text no. 24
[PUBMED]    
25.
Agrawal S, Sharma SK, Sreenivas V, Lakshmy R. Prevalence of metabolic syndrome in a North Indian hospital-based population with obstructive sleep apnoea. Indian J Med Res 2011;134:639-44.  Back to cited text no. 25
[PUBMED]  [Full text]  
26.
Bharadwaj R, Ravikumar A, Krishnaswamy NR. Evaluation of craniofacial morphology in patients with obstructive sleep apnea using lateral cephalometry and dynamic MRI. Indian J Dent Res 2011;22:739-48.  Back to cited text no. 26
  [Full text]  
27.
Bhushan B, Guleria R, Misra A, Pandey RM, Luthra K, Vikram NK, et al. Obstructive sleep apnoea correlates with C-reactive protein in obese asian indians. Nutr Metab Cardiovasc Dis 2009;19:184-9.  Back to cited text no. 27
    
28.
Ghoshal AG, Sarkar S, Roy DJ, Das RK, Ray M. Polysomnographic profile in a sleep laboratory in Kolkata: A retrospective analysis of 714 cases. J Assoc Physicians India 2010;58:415-9.  Back to cited text no. 28
[PUBMED]    
29.
Reddy EV, Kadhiravan T, Mishra HK, Sreenivas V, Handa KK, Sinha S, et al. Prevalence and risk factors of obstructive sleep apnea among middle-aged urban Indians: A community-based study. Sleep Med 2009;10:913-8.  Back to cited text no. 29
[PUBMED]    
30.
Liu J, Wei C, Huang L, Wang W, Liang D, Lei Z, et al. Prevalence of signs and symptoms suggestive of obstructive sleep apnea syndrome in Guangxi, China. Sleep Breath 2014;18:375-82.  Back to cited text no. 30
[PUBMED]    
31.
Pahwa P, Karunanayake CP, Hagel L, Gjevre JA, Rennie D, Lawson J, et al. Prevalence of high epworth sleepiness scale scores in a rural population. Can Respir J 2012;19:e10-4.  Back to cited text no. 31
[PUBMED]    
32.
Niţă O, Graur LI, Popescu DS, Popa A, Boişteanu D, Graur M, et al. Prevalence of obstructive sleep apnea symptoms in a rural population. Rev Med Chir Soc Med Nat Iasi 2012;116:97-102.  Back to cited text no. 32
    
33.
Neruntarat C, Chantapant S. Prevalence of sleep apnea in HRH princess Maha Chakri Srinthorn medical center, Thailand. Sleep Breath 2011;15:641-8.  Back to cited text no. 33
[PUBMED]    
34.
Barba C, Cavalli-Sforza T, Cutter J, Darnton-Hill I, Deurenberg P, Deurenberg-Yap M, et al. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004;363:157-63.  Back to cited text no. 34
    
35.
Bhagyalaxmi A, Atul T, Shikha J. Prevalence of risk factors of non-communicable diseases in a district of Gujarat, India. J Health Popul Nutr 2013;31:78-85.  Back to cited text no. 35
[PUBMED]    
36.
Garg N, Rolle AJ, Lee TA, Prasad B. Home-based diagnosis of obstructive sleep apnea in an urban population. J Clin Sleep Med 2014;10:879-85.  Back to cited text no. 36
[PUBMED]    
37.
Burgess KR, Havryk A, Newton S, Tsai WH, Whitelaw WA. Targeted case finding for OSA within the primary care setting. J Clin Sleep Med 2013;9:681-6.  Back to cited text no. 37
[PUBMED]    
38.
Chai-Coetzer CL, Antic NA, Rowland LS, Catcheside PG, Esterman A, Reed RL, et al. A simplified model of screening questionnaire and home monitoring for obstructive sleep apnoea in primary care. Thorax 2011;66:213-9.  Back to cited text no. 38
[PUBMED]    
39.
Collop NA, Anderson WM, Boehlecke B, Claman D, Goldberg R, Gottlieb DJ, et al. Clinical guidelines for the use of unattended portable monitors in the diagnosis of obstructive sleep apnea in adult patients. Portable monitoring task force of the American Academy of Sleep Medicine. J Clin Sleep Med 2007;3:737-47.  Back to cited text no. 39
[PUBMED]    


    Figures

  [Figure 1]
 
 
    Tables

  [Table 1]



 

Top
  
 
  Search
 
  
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
    Materials and Me...
   Results
   Discussion
   Conclusions
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed3559    
    Printed21    
    Emailed0    
    PDF Downloaded345    
    Comments [Add]    

Recommend this journal